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Cloud components and security
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 Different components: Services, devices, 
databases, raw code, software applications, 
firmware….

 Which components can/should be  really 
considered as secure?

 Where is the user??

 Why do we assume that security established 
by/from the user (credentials) is equal to a 
secure computer?



  

Insecurity in the cloud

 

P3

 Not all services on the cloud can be 
considered secure.

 However, users and companies need the 
cloud because of its availability, flexibility, 
scalability, ease of service, ….

 Is there a solution?

 If photographs are not safe on the cloud, 
would you risk your business data?



  

Hardware-entangled cryptography
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 Can we bind services to hardware?

 Hardware will always be present when 
accessing the cloud.

 However, there may be convenience issues.

 Nevertheless, browser-based services already 
do flexible binding. 

 Advantages:
 Much more difficult to break.
 Can be combined with existing solutions.
 Client-based flexibility.
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Physical(ly) Unclonable Functions

▪ Cryptography based on hardware 

characteristics

▪ Functions embedded into physical objects

▪ Can be used for identification, secure key 

storage or even in bit commitment and 

oblivious transfer schemes
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▪ Authentication and identification

▪ Integrity of devices
▪ Anti-counterfeiting
▪ Tamper-evidence

▪ Lightweight security

Use cases for PUFs
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SRAM block
(array of SRAM cells)

challenge = memory address

response = memory content

Physical Unclonable Functions (PUFs)

▪ Functions embedded into physical objects

▪ Manufacturing process variations 

→ unique identity for ICs

▪ When queried with a challenge, a PUF generates a 

response (Challenge-Response Pair; CRP)

▪ The response depends on

▪ the challenge and

▪ specific physical properties of the object



  

Weak PUFs
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Weak PUFs

▪ A single or very few challenge-response 

pairs

▪ Memory-based PUFs

▪ In production stage

▪ Inherent to most devices



  

Strong PUFs
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Strong PUFs

▪ Multiple challenge-response pairs

▪ Delay-based PUFs

▪ Still on the prototype stage

▪ Require dedicated circuitry



  

Error correction for PUFs
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SRAM block
(array of SRAM cells)

challenge = memory address

initial response = memory content
Error correction mechanism

▪ Fuzzy extractor

▪ Helper data, based on registration

Fuzzy extractor

Helper data

final response = corrected memory content

Error correction
mechanism



  

Simple PUF protocol example
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Cloud, fog or mist?
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 What about the diversity of devices?

 We would need to use a weak PUF.

 But, an additional problem that has been 
hard to tackle is using weak PUFs at 
runtime.

 Is hardware flexible enough?

 If the cloud is not always secure, can we 
trust the fog or the mist?



  

Data remanence DRAM PUF
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 Extract decay-based DRAM PUF instances from 
unmodified commodity devices during run-time of the 
Linux system
 No extra chips needed for PUF
 Exploit hardware which is on-board anyway

 Through extensive experiments, we determine that 
DRAM PUFs exhibit robustness, uniqueness, and 
stability

 It is thus possible to design protocols for device 
authentication and secure channel establishment that 
draw their security from the time-dependent decay of 
DRAM cells Experimental platforms

 Pandaboard (top) 
 Intel Galileo (bottom)



  

DRAM model
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 A DRAM cell consists of a 
capacitor and a transistor

 Each bit is stored as charge
 Charge leakage 
 DRAM refresh

 Accessing a word will 
refresh the whole row

 Due to the manufacturing 
variations among DRAM 
cells, some cells decay 
faster than others, which 
can be exploited as a PUF



  

DRAM PUF model
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(1) DRAM for ordinary use

(2) PUF region (in grey) is initialized 
and the DRAM 

(3) PUF cells decay for time t

(4) Read out the DRAM to extract the 
PUF measurement

(5) DRAM return to normal usageOS & App memory

OS & App memory

sizeaddr

Logical
PUF

OS & App 
memory

OS & App 
memory

OS & App 
memory

OS & App 
memory

OS & App 
memory

OS & App 
memory

refresh is disabled 



  

Implementation
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Two approaches

 Firmware
 DRAM is not used by firmware, so the whole DRAM refresh can 

be disabled

 Kernel module
 Selective DRAM refresh
 Read a word in each DRAM row, and thus, refresh the DRAM 

used by the system and applications



  

Data remanence in intrinsic SRAM PUFs
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 Data remanence 
 Dependent on temperature
 Exists on both DRAMs and SRAMs
 Can be very short-lasting on 

SRAMs (tens of milliseconds)

 SRAMs are no longer individual 
modules

 Usually Package-on-Package
 Sometimes on-die
 May serve as cache
 User-space programs have access, 

but attacks are more difficult



  

PUFs, IoT and the Cloud
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 If we can use PUFs at runtime on IoT 
devices, why not use this also on the Cloud?

 We do need better security solutions for the 
cloud; more scalable, more agile.

 Hardware can offer this: Different devices 
get different privileges on the same account.

 If we can provide security for machines, we 
should be able to provide security also for 
people.



  

Advantages and potential PUF solutions
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 Inherent solutions: Low cost

 Automation: The machine authenticates itself

 Server-client security

 Scalability 

 Turn attacks into security features: Rowhammer PUF

 Use communication modules for security: WLAN/WiFi modules

 Use communication channels as PUFs
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Discussion
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