

Hardware-entangled security

Extracting a secure key from IoT hardware

Nikolaos Athanasios Anagnostopoulos

Cloud components and security

P3

 Different components: Services, devices,
databases, raw code, software applications,
firmware….

 Which components can/should be really
considered as secure?

 Where is the user??

 Why do we assume that security established
by/from the user (credentials) is equal to a
secure computer?

Insecurity in the cloud

P3

 Not all services on the cloud can be
considered secure.

 However, users and companies need the
cloud because of its availability, flexibility,
scalability, ease of service, ….

 Is there a solution?

 If photographs are not safe on the cloud,
would you risk your business data?

Hardware-entangled cryptography

P3

 Can we bind services to hardware?

 Hardware will always be present when
accessing the cloud.

 However, there may be convenience issues.

 Nevertheless, browser-based services already
do flexible binding.

 Advantages:
 Much more difficult to break.
 Can be combined with existing solutions.
 Client-based flexibility.

 P3

CROSSING

Project P3
Hardware-entangled cryptography

Hardware-entangled cryptography

P3

Stefan Katzenbeisser

Nikolaos Athanasios
Anagnostopoulos

Physical(ly) Unclonable Functions

▪ Cryptography based on hardware

characteristics

▪ Functions embedded into physical objects

▪ Can be used for identification, secure key

storage or even in bit commitment and

oblivious transfer schemes

P3

▪ Authentication and identification

▪ Integrity of devices
▪ Anti-counterfeiting
▪ Tamper-evidence

▪ Lightweight security

Use cases for PUFs

PUFs

P3

SRAM block
(array of SRAM cells)

challenge = memory address

response = memory content

Physical Unclonable Functions (PUFs)

▪ Functions embedded into physical objects

▪ Manufacturing process variations

→ unique identity for ICs

▪ When queried with a challenge, a PUF generates a

response (Challenge-Response Pair; CRP)

▪ The response depends on

▪ the challenge and

▪ specific physical properties of the object

Weak PUFs

P3

Weak PUFs

▪ A single or very few challenge-response

pairs

▪ Memory-based PUFs

▪ In production stage

▪ Inherent to most devices

Strong PUFs

P3

Strong PUFs

▪ Multiple challenge-response pairs

▪ Delay-based PUFs

▪ Still on the prototype stage

▪ Require dedicated circuitry

Error correction for PUFs

P3

SRAM block
(array of SRAM cells)

challenge = memory address

initial response = memory content
Error correction mechanism

▪ Fuzzy extractor

▪ Helper data, based on registration

Fuzzy extractor

Helper data

final response = corrected memory content

Error correction
mechanism

Simple PUF protocol example

P3

Cloud, fog or mist?

P3

 What about the diversity of devices?

 We would need to use a weak PUF.

 But, an additional problem that has been
hard to tackle is using weak PUFs at
runtime.

 Is hardware flexible enough?

 If the cloud is not always secure, can we
trust the fog or the mist?

Data remanence DRAM PUF

P3

 Extract decay-based DRAM PUF instances from
unmodified commodity devices during run-time of the
Linux system
 No extra chips needed for PUF
 Exploit hardware which is on-board anyway

 Through extensive experiments, we determine that
DRAM PUFs exhibit robustness, uniqueness, and
stability

 It is thus possible to design protocols for device
authentication and secure channel establishment that
draw their security from the time-dependent decay of
DRAM cells Experimental platforms

 Pandaboard (top)
 Intel Galileo (bottom)

DRAM model

P3

 A DRAM cell consists of a
capacitor and a transistor

 Each bit is stored as charge
 Charge leakage
 DRAM refresh

 Accessing a word will
refresh the whole row

 Due to the manufacturing
variations among DRAM
cells, some cells decay
faster than others, which
can be exploited as a PUF

DRAM PUF model

P3

(1) DRAM for ordinary use

(2) PUF region (in grey) is initialized
and the DRAM

(3) PUF cells decay for time t

(4) Read out the DRAM to extract the
PUF measurement

(5) DRAM return to normal usageOS & App memory

OS & App memory

sizeaddr

Logical
PUF

OS & App
memory

OS & App
memory

OS & App
memory

OS & App
memory

OS & App
memory

OS & App
memory

refresh is disabled

Implementation

P3

Two approaches

 Firmware
 DRAM is not used by firmware, so the whole DRAM refresh can

be disabled

 Kernel module
 Selective DRAM refresh
 Read a word in each DRAM row, and thus, refresh the DRAM

used by the system and applications

Data remanence in intrinsic SRAM PUFs

P3

 Data remanence
 Dependent on temperature
 Exists on both DRAMs and SRAMs
 Can be very short-lasting on

SRAMs (tens of milliseconds)

 SRAMs are no longer individual
modules

 Usually Package-on-Package
 Sometimes on-die
 May serve as cache
 User-space programs have access,

but attacks are more difficult

PUFs, IoT and the Cloud

P3

 If we can use PUFs at runtime on IoT
devices, why not use this also on the Cloud?

 We do need better security solutions for the
cloud; more scalable, more agile.

 Hardware can offer this: Different devices
get different privileges on the same account.

 If we can provide security for machines, we
should be able to provide security also for
people.

Advantages and potential PUF solutions

P3

 Inherent solutions: Low cost

 Automation: The machine authenticates itself

 Server-client security

 Scalability

 Turn attacks into security features: Rowhammer PUF

 Use communication modules for security: WLAN/WiFi modules

 Use communication channels as PUFs

P3

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 29

